
311-tg O POINTIIISE STRUILIZATIOU FOR COIWUD GISLIM IM IA
L1R3 IMYE ESIMUIOUS. (U) PEMUMVLMIR STITE UNIV
tIIEESITY PAU DEPT OF NOTHENSTICS. G CHEN ET ML

r W7MASIFJED WI JRN N NFOS-TR-W9-4146 9WOS-S5-M23 F/0 13/13 .L

I-m-lE



4

11~~~~ "I_. .28j

fl40 2Ili
p...

jj'aL
Il 11

w w



~fCFILE COPY
1EPORT DOCUMENTATION PAGE

AD-A 190 031 lb

3 DISTRIBUTIONIAVAILABILITY OF REPORT

2b. OECLASSIFICATiON DOOWNGRADING SCHEDULE AppT'vV'd foa tc -'ease•
dLstr itution unI.L ted.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TK- 8 8 - 0 146

6. NAME OF PERFORMING ORGANIZATION 16b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION *

Pennsylvania State University (if appice) AFOSR/NM

6c. ADDRESS (Crty, State. and ZIP Code) 7 b AffESXr-State, and ZIP Code)
University Park, PA 16802 Bldg 410

Bolling- AFB DC 20332-944a

S1. NAME OF FUNDING/SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if appcab ) AFOSR 85-0253

AIOSR N8

o. JWWty, State, and ZIP Code) 10 SOURCE 0F FUNDING NUMBERS
APROGRAM IPROJECT TASK WORK UNIT

Bldg 410 ELEMENT NO. NO NO. ACCESSION NO

BoalIfl AFBDC 20332-6448 1102F 2304 A l
11. TITLE (Include Securrry Cas.sification)

Pointwise Stabilization for Coupled Ouasilinear and Linear Wave Equations

12. PERSONAL (THOR(S)

Drs. G1 Chen and HiK. Wang

13a. TYPE OF REPORT 113b. TIME COVERED j1.DATE OF REPORT (Year, Month, Oay) uS. PAGE COUNT

Conference ProceedingsrROM 9/1/85 T08/31/86 1983/1/8 24

16. SUPPLEMENTARY NOTATION

17 COSATI COOES 18 SUBJECT TERMS (Continue on reverse if necessury and identify by block number)

FIELD GROUP SUB-GROUP ,

4,

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

-'--A large structure is formed by the coupling of simple structural elements. 1f this paper

.we'considers:the simplest type of such structures which is made up of two coupled strings

modelled by quasilinear or linear wave equations. We two stabilizers: one at the

left boundary and one at an in-span point. We-v d the exponential stability property of

this coupled dynamic structure. The method of characteristics and a frequency domain theorem
due to F.T. Huan are used. For the quasilinear case, we chow ht e-can determine various

parameters so that the system is exponentially stable for sufficiently small data. For the

linear case, weAew th a installing a stabilizer at a boundary point is robust for the

exponential stability of the system. .

/w

20. DISTRIUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
RUNCLASSIFIED/JNLIMITED 03 SAME AS RPT .DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include eCod) 22c. ?&ICE 01MOL

Mai. James M. Crowlev 202-767-5025

00 FORM 1473. A MAR 3 APR eition may b* used until exiausted. SECURITY CLASSIFICATION OF -HIS PAGE
All other edition are obsolete.

.. .. . •. .-, ,',Y,,.,.- -.,..-.. ..%,,.",%, ,". ',%,



t';'

W~V~ ~ 0 14 6

~eIK:Kuisch,

C er(Eds.)

~i iUted Parameter Systems
4 ' 'Proceedings of the 3rd International Conferenc -e

SVorau, Styrila, July 612 9CAceso
____ ____ ____ ___ ____ ____ ____ ___ ___Accession___ For

4ulNMIS. ORh I
~...DTIO TAD

. Unan o~ed
JustIfieation

Springer-Ve.)z Availability Codes

Dist Special

88 2 26 124



POINTWISE STABILIZATION FOR COUILED QIJASI.INNAR AND

LINEAR WAVE EQUATIONS

,, - Goong Chen and Han-Kun Wang

X <q Department of Mathematics
Pennsylvania State University

University Park, PA 16802
. . .USA

IL. Introduction.

". A large structure is formed by the coupling of simple structural elements. In

this paper we study the simplest type of such structures which is made up to two

coupled strings modelled by qluasilinear or linear wave equations. We install two

stabilizers: one at the (left) boundary and one at an in-span point. We wish to study

the exponential stability property of this coupled dynamic structure. The nonlinear

..or linear partial differential equations are described below:

tz(X It) - X (J1,t =o"-"ta /x- I-P ( ' t  -  t '  ax 11 0° , , , z

(nonlinear) (1.1)

~~(a.t -
2 '(xt 0 , 1 x~ 1,2

(X. 0i 1. 1 )

(t dx', x

(linear) 'w(x (1.2)

.--p (xt) c; ' ax =  0. 1 - . - 2,

where

a,, a. satisfy o,(0) 0, a(u) 0 0, i = 1,2,

and

"c, = V75 , c. 

T, tension constant on string i, i= 1,2,

p = mass density per unit length.

Supported in part by NSP Grant 84-01297A01 and AFOSR Grant 85-0253. The U.S.
5.,"w Government is authorized to reproduce and distribute reprints for governmental

purposes notwithstanding any copyright notation thereon.
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We huve tWeitly waumod that Limo mcuse donsitiou on both totringec are idutliticul. 1,This

information is contained in a, aned az in (1.1)). The length of each atring has

been normalized to 1.

At the left end x 0, a stabilizer is installed satisfying, respectively, the

following condition

v.(w.(0,t)) -k~w,(O,t) Z0 (for (1.1). k.~ x 0. (1.3)

C IW5 (O~t) - k~wt(0.t) 0 (for (1.2)). k: - 0. (1.4)

At the intermediate node x 1, another stabilizer is instailed according to one of

the following two sets of dissipative trainamission conditions (compare (21) hold:

frtenonlinear system (1.1). For the linear system, the counterpartsar

C:W(1-,t) C:W,(1+,t)1

wt(IV,t)-wt(1+,t) -k:.fw.(1-,t)(= -kcw,(1+t)), k: 6 0.

or

W(1,'t) = w(l+,t) (.)

'4 ' Note that if k. in (1.5), (1.5)', (1.6) or (1.6). then there is no loss of

energy at x I and the joint is conservative. We call k. mid k, the feedback

gains at x _-0 and x = .

.)~At the right end x =2, we may ausume that it is either fixed or free:

w(2.t) 0 (fixed end) (1.7)

w,,(2,t) 0 (free end)

We want to study the effects of stabilizers for coupled nonlinear and linear

vibrating strings as described above. We will be primarily concerned with the

#A '5. %
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following question:

[QJ "When does the solution of the above coupled wavo qiations decay

exponentially"

The answer to the above question is well understood in the cae of a single

(nonlinear or linear) vibrating string. Greenberg and Li [6] proved that for (1.1),

(1.3) and a conservative boundary condition at x = 1, the solution decays

exponentially in the CI-norm for any k: 1 0, provided that the initial data is0

sufficiently small, smooth, and that appropriate compatibility conditions are satisfied.

In the linear case, uniform exponential decay of energy follows as a simple exercise

of the method of characteristics.

The problem of coupled vibrating strings is equivalent to that of a hyperbolic

system. Some recent papers by Chen-Coleman-West (21 and Qin (91 have provided

partial answers to [Q] under study here. Another recent paper [7] by F.L. Iluang

has also introduced a direct way of proving exponential decay of solutions for linear

systems. His method is to establish a uniform bound of the resolvent operator on the

imeaginary axis. In this paper, we will provide answers to (QI along the directions of

(2). [7] and [9].

The organization of our paper is as follows. In il, we first give a

counterexample of Qin's theorem in (91 and state Its correct version. in 111, we

apply the corrected theorem of Qin to coupled nonlinear vibrating strings and state

some sufficient conditions for exponential decay of solutions with small data. In @IV,

we apply Huang's theorem to give a complete answer to (Q) for coupled linear

strings.

M11. A Counterexample and Correction to a Theorem bL T.I. n 11 r Qtaailinoar

Hyperbolic Systems with Dissipative Boundary Conditions

Let

au(x*) + A(u(xt)) au(xt) =, 0 0 , t 0 (. t.)
at ax

be a first order qunsilinonr hyperbolic nystem, whoi., o c " i,I A(Il iO #Ir, .N-k.

sufficiently smnooth matrix function of the virihible t, ofsv.

As in [91, assume that

(AI) System (2.1) is hyperbolic for sufficiently smalll i l art thv followirng sm0ruw:

i) The matrix A6) has N smooth roal otgoeinvlhe" n(o.....ml rd

,(0) d ... ' A,, ( ) 1 0 ' ,.,,(0) A . ' M(0). (.2
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ti) AMU hus N lirmourly inkdopeiidant loft eigonvectore -

fj(u) (Eau . JNu) j A N (2.3)

corresponding to each real eigenvalue Aj(u). Eo

Without luas of generality, we assume that the matrix

C E~u)u(2.4))

is identity when u 0, i.e.,

1I 01 ~
E(0) =. (2.5)

* L e t 

p

3 1
aUtz a (2.6)

Due to (2.2) and (2.5), general boundary condition. for system (2.1) should have the

following form.:

I'l (uI) at X 0,

U, (u11) at X = 1. (2.7)

* where

are C'I-#imorth vortor-vilted functions. W., de~fino

10) - T(
0
) (in (N a)-(N-w) outrix.Iu.u

U'
p. *;',** **~ * %~~%

A "S I..
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* ---j-r(O) Lj -- (o) an u.- mutrix,

where

aF (,.. . ) (G ...... G )
a(u,..... U.) ' i a(u.+, ... U.)

Let the initial condition of (2.10 be

u(xO) = O(x), 0 a x A 1. (2.8)

In addition to (At), we assume

W(A) The initial and boundary conditions (2.8) and (2.7) satisfy the following:

i) F(0) 0, G(O) = 0.

ii) At x 0 and x = 1, the following compatibility conditions are satisfied:

#11(O) = '(
1 (O)), 01(l) = G(#1

1
(1)) (2.9)pt

aF )41) _ )
EA"'(#(0))- -u

1 
(#(0))A+'(*(0))j a

(2.10)

IA22(0(O)) -F (#(0))A'2(#(0))] l1O 0 .
aGa

axa,+ao -x .• _#' ,
(A ( (1)) - --u

T
(*(1))Aa((1))J ] + ,

(2.11) :

[A'2(#(O)) - G (0 1( ))A 2 (#(I)) a X r 0

where All, A13, A"' and A' are blocks of sub-matrices of A corresponding to

the decomposition u = (UleUll):

A(u) = [A (u) A& ((U)

IA31m(u) A22(1)

For any nan square matrix H = (mgj), we define its absolute value matrix M

by

',

-



This matrix M satisfies the property that

itE ;VI. A UaX ! 10,JIV$-. for all v C IR".
asiAn j=a

a- where

lv. t max IvIl for v =(v,..,v) CAI,
,? 1 .n

We thus define a norm I I for M by

IMI 0 max I is,I (a IMI).
*ddi. j=1

We now state the "theorem" of T.H. Qln in (9).

Theorem O. Assume (All and (A2). Assume further that the spectral radii of B,

and B2 are less than 1. Then there exists 6 1 0 such that the mixed

initial-boundary value problem (2.1), (2.7), (2.8) admits a unique global smooth

solution u(tox) for t & 0 and ou(t.)lc ) decays exponentially

lu(t,.)lC,(Ol) 6 Ke
-a t,  

Ka 1 0, for all t h 0, (2.12)

provided that 1#lCO(01,) * I #'1CO(O,1) 6 8, where in (2.12), K depends on 0 and 0
the rate of decay a is at least

a = - A.jn.l (2.13)

2 p

with 0

,, a I (for 6' • 0 some Rmall num.ber) (2.14)
*in, c°(-6 .')'

p is the smallest positive integer making

uax(IlI eI,.IB) • 'o 1 (2.15)

end a is any real number in (ao,l). 0

IL is well-known that solutions to quasilinear hyperbolic systems with smooth

.5'
~o
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data develop shocks within finite duration. Therefore it is required in the conditions

of Qin's theorem that the C'-norm of * be sufficiently small. Thus normally

exponential stability (2.12) can only be expected for small data.

The conditions on the spectral radii of B and B2 in the statement of

"Theorem 0" seem so intuitive and natural, as we anticipate that waves would lose

strength exponentially after repeated reflections on energy absorbing boundaries.

Unfortunately, the conclusion is erroneous due to the fact that in a systea. there are

several waves travelling with different speeds, thus their superpositions may form a

wave which is undamped. The following is a counterexample.

We consider a linear system formed by the coupled wave equations (cf. (1.2))

w(x.t) - c:a'W(Xt) = 0, 0 X 1, t 0
Wt. - i x

2

Wt) - zax"xt O, 1 x • 2. t • 0 (2.16)

(c: , c:)

with boundary and transmission conditions

w(Ot) =0 at left end x 0,

w.(2,t) 0 at right end x 2,

wt(,t)-wt(1,t) = -klcw(l,t) (2.17)

at x = 1, cf. (1.6).

c2W.(I-,t) = cw,,(l*,t)

. Let us transform them into a hyperbolic system by letting, for x c (0,I),

W (X =t) z I-c . (2-xt) -(2-.,t

w,(xt) =1 -c,-4 -(Xt) , , t ) ,

w,(xt) = f-c,.!(X.t) + t)],

w.(x=t) 1c4. (2-x.t) +

Then w (w,,w,w,,w.) (w t ,w
1

I) (wI (w,,w,), wi t  (w 3 ,wj)) satisfies

-- - - -- -
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(x 0

at xOt) 10

2c, 1c+,4CC
w10J) =(cg+ca+k3.csc2a' I IwI(lt)

a~~~ -C.1
1,) L-c+kc~c2  2c2  J

_t ~It is easy to see that (Al) and (A2)(i) are satisfied. (A2)(ii) is iiatisfied if the initi

4.4 condition is chosen to satisfy the compatibility conditions. (2.5) is trivially satisfied.

a C,-C34k2v.c1 S +2C2

bNoD0, is D coniuted to be 21' (2.19)

which has eigenvalues

= (~ c~c c )'(c -c *Cc,c2(kcc-4)'/2). (2.20)

40 DDO has identical eigenvalues as B, VDD sgvnaoe tI ayt

I 'A I for any Its~ 0.

H.~nce all of the hypotheses of "Theorem 0" are satisfied.

We now prove that solutions to (2.18) do not decay exponentizully by showing

that the coupled wave system (2.15), (2.17) has at lest some eigenvalues located on

isthe iugizaary axis. We write an eigensolution of (2.16), (2.17) as

w(x,t) eAtom(x). 0 ' x A 1 (2.21)%

eAto.(x). 1 A x a 2.

1 *(x) -(A/cs)2#a(x) 0, 1 (2.22)

Due to the first two boundary conditions in (2.17), we have%

7' 1A!
%I



4k (x) =A. texp(Ac/c,) ext)(-Ax/:s- ) 1 0A 1' (2.23)

0x)=Aa[exp(A(x-2)/ca +- exp(-A(x--2)/c.)]. 1 A x A 2.

4 The second two transmisuian conditions in (2.17) impose that

cAjAiexp(A/ct) +. exp(-A/cl)J c2A2A(exp(-A/ca) - exp(x/c2 )J

AA&Iexp(X/c,) -- exp(-A\/c,)] - AA2 [exp(A/ca) + exp(-A/ca)J (2.24)

+ k"cA,A~e~p(A/c,) + exp(-A/Cj] =0.

Tharefore all eigenfrequencies A are determined by

c,(Xc~-/l ,(e A/. jXC
(aI -Ic+/.Ae )+c (a A/ 1  /c2  -/c 2)

a, (I~~/C,+ /C, 2 Al/t-/c, +e ) c-(e +e-(/c+/c)
+Oka~de I/.+ Ac)ce -

Write~~~~, A~- (2.25)eC Te (.5)bcoe

'V.,a

A =c(IMLf + e4(0+L)B + ef(M-L)B + e1'(MN)U] (2.27)

+ ca[e(Ml) + e(-I ) -t~) -'")B

. .. .. .+ kcc.[ei(M+L)U -e1(0+L)IS -l( +IM- e'(ML

=2cj(cos(M+L)Bl + cos(?4-L)BI + 2cjlcos(M4L)a - cos(w L)Lj

+ i 2k~c,cd(sin(f4+L)B - sjn(WL)D1.

Then a 0 if and only if

(c,+c 2 )cos(KviL)O + (c,-c,)coa(*-L)B 0 1 (2.28)
sin(4+L)Q sin(M-L)B 0.

4,,

- -~ ,~L *~ ' R

' j **'1. -

Y-4 N-



the t+L2n~ (L 2n. 2n1) ie

C2 M 2n+1

the ML 4n1,M- 1.cc2= -+ca, cl-ca ca and (2.28)gie
2n+1 2n#-l

(4n+1)coa(4n+l)8 coall = (229

sin(4n41)l1 - sinfl 0. v

It is obvious that G3 -/2 is a solution of (2.29). Hence

A =it~cil = if. + jic.any positive integer n,

is an eigentrequency of (2.16), (2.17) which is undamped as ite A 0. This is a

counterexample to "Theorem 0".

The fallacy of "Theorem 0" is due to the fact that in [91 the author ham

forgotten to3 take certain absolute valuos between steps (52) - (54) in [9. pp. 295- w

2961. The mistakes can be easily corrected by changing III, B2 in the statement of

"Theorem 0" to ilt BI,. We state the corrected version of Qin's theorem below:

Theorem 1. Assume (Al) and WA). Assume further that the spectral radii of Band

0. ae less than 1. Then there exists 6 1 0 such that the mixed initial-boundary

value problem (2.1), (2.7), (2.8) admits a unique glot~al smooth solution u(t.x) for

t & 0 and *u(t,)1 decays exponentially

. 0t-1C(0,1) A K ', Kau 0 for all t b 0. 2.0

provided that 1$1 4 1#'l ,where in (2.30), k de.pendts on a nd
C'(0,l) 00(0.1) 6

the rate of decay a is at leat

-,., In a
7.2p (.1)',

withf ~ ~A. m in IAI 0  *5)* (for some small 8' 1 0)

p is the smai'lest positive integer stoking

max(IB~IIp I a.' (2.32)

~0^

- * ~a
4,17'



and cr is any real number in (a ,l1).

Note that the above correction imlposes very severe restrictions on matrices B,

and B2. It dues not apply to many cases studied in (2) e.g. as one realiz~es that in

41 *1 2] the spectral radii of 81 and B2 are less than 1, but those of Bor 9,are

usually not less than 1.

,>., ~VIII 11. Coupled Nonlinear. Virtn qtrings wth Point Stabilizers.

Let us first consider the system (1.1), (1.3), (1.5) and (1.7). We will transform

the system into a form which allows the application of Theorem 1.

Without loss of generality, we assume that

.:(O) ";a(O). (3.1)

Define

t) aw(x.t) - a~ t)y.(x,) ax *y.(x,t) X

3. (3.2)

zxt aw(x.t) a
3,, dx *) z.(x.t) Ti(

2
xt)

for x c (0, 1), t 1, 0. Use the following Riemann invariants to diagonalize the system:

yo.

, y~l f , (-1d,
u 25~z l7()d)

0

i 1,2. (3.3)

b--.

0 0 0.
0 -C2(,- U3

[u + I~~ 0 0 0

at 0 0c2 (u2-u3) 0 0 1
0 c,. u2-u,)(3.4) .

00 0 cl(ul-u.) 3

jj0' x 1I, t 0.

where

ct(y) -7TUFTT, i 1,2, (3.5) :%

a t I .. v i

T'i

44 .
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denotes the wave speed on string i, and U (Y) is defindod implicitly by

v~ ~(3.6) 1
0

We now transform boundary and transmission conditions (1.3), (1.7) and (1.5) in

terms of u:

u, (0,) Q F,(u (O,t)1
- . . u11(o t) j J F(u 1 (O,t)) J

where F(O) G(O) 0, and

F.(ull) =F,(u.) =u

v..au, a

F.(ul) =F.(u,)

aus c,(u,-F.(uj)-+k" (Ii.uI
.~.. -

I0

IF.
0.

au,

OGL 2c,
du, ci*c2+k

2
c,C2

_8G. cj-c2+k,V,C2
8u. c,4c2 *k~uc 1  m a (* u

C. c(G 2 (u1 1 )-u,).

au3  c. ~c 3 +k'clc

. dG& 2c,
au, ci+c,*k cI2.

Therefore

7 -;V

'A,.

u~

.% %%
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du~, ±JU2 -

d-F(O ddu , (0) -2

au au. c, (0)ik
2

(0) =.. 0 ' ,

ac2, aG,

.6 "~au au (0 (c.(O) + c,(O) + k~c,(0)C2 (0)]V'

Ju, Ju.

2c2 (O) c,(O)-c.(O)+k~c(),0

4 -c (0)+c (0)+k:c (O)c (O) 2c,(O)

The reader can see that the matrix D, in (2.18) looks almost like the transpose
0 matrix of the matrix above.

So

c,-c2 -kc 2  -2c,

B, = ct~ca+kclc 2 J-' ck (1P)C-

22 c,4k
2  

c1 C 1 1 0  +k 5

c,+k 0 + z

=a [c&+c2+kcjcV-'

2c, c,-k 2kc
cck+kc 3

where in the above, we; have abbreviated c, (0) and c2 (0) as c, and c.,

respectively. Under the previous assumption that cl c 2  (i.e., (3.1)), we have

1c,-c2--k~cjc2  2c,

BI,

2C, ,k (c, -c2#k 1c, (2)1  k
2

c~
0  

a k0

(3.7)
rK2  2cla-1

Ic&-K K,K,

L 2cA'K3

'mtf

* ~ ~ ~ 1 ze *, ,j~~
%I



83 (Cl",kccJ ak I~ a

2 Ic, IIc,-c
2-kc,c31

-i T ."- (3.8)
-[K,K, 2c,A'

where in the above

K, B AI(c5 -c,+k,,ckc2)
(3.9)

K, m a-'Ic,-c,-k,c,I

K, * lc1-k41/(cg+k:).

The spectral radii of 9, and B, are determined from IAI of

d~e(A-l1 ) det(A-fia) =A"-(K,K,+K2)A4KjKzK,-4cjcA'"Ks 0. (.0

According to Theorem 1, a sufficient condition for exponential decay of solutions with

small data is that the roots A5j, Xa of (3.10) satisfy '

The above can be determined by the standard Routh stability criterion in automatic

4 £~control as follows. Let us use the following Mobius transformation mapping the

interior of the unit circle into the left half plane:

7 7.
X -Z~Z

I e MO

'p t'

*'50 WY 1
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* Substituting (3.12) into (3.10), wit get

Aozz4Az+A 0 (3. 13)

where

AL U +K,K,+K,+K,K,l,-4c,c,A'K, (0)

a, 2(l-K,KK,f4c,c,A'"K,) 1(3.14)
A, a 1-K,K -K,*K,KK,-4c,c3A'2K.J

Condition (3.11) is now equivalent to that (3.13) has no roots on the open right half

plane. This can be determined by the Routh criterion an follows:

A, 0-*AA-A0I, - A (3.15)
A,

Therefore (3.11) is satisfied if and only if the following condition is satisfied:

The first column AA,9('A)in (3.15) is of one sign

..... and A, 2 0, A,3 0, i.e., all of coefficients AO,, A& and A. (3.16)

in (3.13) are nonzero and positive.

We summarize the above in

Theorem 2. Assume (Al) and (A2) Its in §11. If P0 0 and k: 0 in (1.3) and

j (1.5) are chonn such that (3.16) is satisfied, then the oxponetktinl decay property
* ~(2.30) hold,. for (1.1), (1.3), (1.5) itrod (1.7) provide~d tl,,mt lh,, iruil,,,I I,,. *x

* "tisfies icolnpliti k.ilI I y cood itionti nod 11,,4 41 uftiienit.)y Hi411,,I I it I I U

'pexponentitil Rtobility (for 111111111 dot') cori nlwiym li.- nchi#-.,n biy ti~it1 it qiog,.

0~~* ~ ~ ~ -~~ ~~ A, 0 w i !,ffu ij~g
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A. C' -C' C,+k C' C, -C' c,-' (c ,c,) c, -k'

If k' is chosen equal (or very close) to c,, we will always get A,~0, A,~0.

This is well known in wave propagation theory as k2 2 c, in (1.3) corresponds to
the characteristic impedence boundary condition which causes maximum energy lose of

waves st x =0. Indeed, the closer le to c, is, the saller the power p in

(2.32) becomes. Therefore the rate of decay a in (2.3t) will become larger. On the

other hand, if ke is not close to c,, then A, and A, may easily become

negative, therefore Theorem 2 will no longer be applicable. This is in sharp

54 contrast to the linear case (cf. Theorem 7 later) where k. can be arbitrary

when k' =0.

What happens if k" 0? Can we get exponential stability by using only one

stabilizer in the middle (x = 1)? The reader can easily check that condition (3.16)

is never satisfied no matter what value k2 % 0 is chosen. In fact, in general the

solution will not decay exponentially as the linear counterexauple in LI has

- already shown. One might wonder whether nonlinearity would work any differently. The

Ii..!.anmwer is still no as the following theorem suggests.

Theoremn 3. Assume that k: 0 in (1.3). Then there are C"-aolut ions to (1.1), I

(1.3), (1.5). (1.7) which are undamped for any k: 0. for some nonlinear at, r,

Proof. We first note that when k: 0. (1.3) becomes

w.(O~t) 0. (.)

We firtit fmsaurn, tt the t,,il,,wirig tboiriiry v,,l,,e! I.r'.Ii',

w(x,t) - d- w(X. I( o, (I I %

41. 1

I " ,,I X 0,

* ~~( yxxl'l[I.

ItI

A, *5V



wy~t X, xt, I x 2.

~ ~ ~ -AL x 0,

wt(0,.t) Wt(0 ,t) = 0, W,,,(0,t) W.(+ t)

*Wtt(0-,t) =w 1 ,(0+,t) 0,

so Y c C2(-1.1) and w c C'(0,I). w satisfies

a 'ax 2 -2 xIV 0

a~~w x.4 a] x, z ' 2. t 1.0.

Set

7 -. (7)

Then al(Oii =0 an , , 1,2,:and w satisfies (1.1). At x 0 and 2,

At x 1

so (1.5) is saife.Hence w is a C2 -soluton of (1.1), (1.3)', (1.5), (1.7) which is'P

undamped.

V But Greenberg (51 ham proved that with

(777 3~[ (+,)''I -~A. C. 0, AL~ 0,

Y'A (3.17) has a Clsolution which is undamped.

The proof of Theorem 3 is complete.

~~~~~7 6;', .I. *.' .'. 4
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Therefore we can safely slate that in .enorul f)xp)nrtial ntability cannot be
71.•.-- attained by using only one stabilizer at the middle of the span for coupled (linear or

- nonlinear) wave equations.

Although we have used the Riemann invariants u in (3.3) to give proofs and

V deduce stability results, the plain fact is that here as in (6] and (91 and in many

other similar papers the approach is essentially based on linearization about the zero

solution u =0. Theorem 2 is but one of the many examples of the principle of

linearized stability which is valid for a large class of general nonlinear distributed

.-. systems.

' .':'i:.&,The case when the intermediate conditions and boundary condition are changed

-to (1.5)' and/or (1.7)' can be studied similarly without any difficulty.

@IV. Couplied Linear Vibrating Strniwith Point Stabilizers.

I In this section we study the exponential stability problem for the coupled linear

system (1.2), (1.4), (1.6) and (1.7). Other transmission condition (1.6)' and boundary

condition (1.7)' can be treated in a similar way.

Previously, several researchers (1], (21, 131, (8] have studied this type of

problem using energy identities or the method of characteristics. We have tried both

methods for system (1.2), (1.4), (1.6) and (1.7), yet we could not succeed in

establishing an affirmative answer to (Q) for our problem for any wave speeds c-,

_. and ysin constants k'9O ka0. The difficulty probably can be

interpreted as follows:

i) At the coupling point x = 1, there are reflections and transmissions of waves

which the energy multipliers are not sophisticated enough to handle.

ii) For coupled linear strings the method of characteristics works best when the

-;5 .wave speeds are identical, i.e., cl ca, cf. (21, yielding sharp decay estimates for

a (cf. (2.12)). Otherwise, this method is not convenient for coupled strings.

Of course, one could also apply the nonlinear Theorem 2 to coupled linear

U. strings. But such a result would not be sharp as the gain coefficients k' and k'
i o

become severly restricted due to the conditions ol the spectral radii of A. and I,.

A recent theorem of F.L. Huang offers an extremly uaofui way to prove

exponential stability for linear systems:

TheoremL4 [7]. Let A ho the infinitesimal generator of n C.-H.,nigroup exp(tA(,

.J which satisfies

.exp(tA)I B .e, t 0 O, for some Bo 
• 0. (4.1)

Then exp(tA) is exponentially stable (i.e, lexp(tA)l • Ke
- a t

, K,a • 0, t a 0) if and

only if

* .I

, .. ' ' :. ~ ,1 '.*" ; :,,.v "" - I ,,.. -
.. '- ..

'C.' *%
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c R) p(A). the resolvent set of A:;42

and

B, sup(l(iui A)-'I 1w c R) '-(4.3)

are satisfied.

This theorem has recently been applied in [4], e.-., to establish an exponential

stability result for an Euler-Bernoulli beam with bending moment proportional

en. -control.

Now we are in a position to apply Hluang's Theorem 4 to (1.2), (1.4), (1.6),.7)

j Let us recast the problem into an equivalent hyperbolic system: For x C (0.1),

define

uj(x~t) C, ~ (x~t) + Xt

axa

u,(x.t) a 3 -[- 4 ~(2-x,t) + (2xt

u.(x,t) * Ec. -w(x~t) + -wxt]
70,%;j 7

Then (1.2) becomes

[U, 1 [ci 0 01 lul
1 I u I = c2  O l I UAu- (4.4)

atlu I 0 0 ca 0lax U,

.4After straightforward calculations, we get from (1.4), (1.6), (1.7) the following

boundary conditions:

At x 0,

0. 1

-1 0

At x 1

2c, -cx+cj+kjcjca

[c 1 -cSsk c c, 2ca

where a c,+c,+k~c~c2, U
1  (u 1 ,us) and ull (us,u.).

Obviously, the underlying Hilbert space is XC ( L'(0,1)1' and

*:r.~~ *,". .

7 v,



D(A) (u C X Iu c [II'(O,Il'j, u sat isfies (4.5) anti (4. 6)) (4.7)

(The apace 111(0.0) is the Sobolev space of order 1).

We solve the resolvent equation

(A - iw)u f. w c R, f c X is arbitrary. 1 (4.8) '
u e D(A). satisfying (4.5), (4.6)

- ~Writing out the above companentwa:

d -i')u. f,

d A
(-cat ica)u. f.

d

UI(X) viye c f a ,d(

0

(4.9)

u.x) ve -' + e f e,~(

i x c L (X- )
u.(X) yve c +L e

where y,, I A i A 4, are determined from (4.5), (4.6):

* [Y'] = D.[J I

2 + ~ ~ ,(4.10)

ysec + S Vi cl- F-,

C D,

C, I Vie CI- F.

INI
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F~ J CJ f(~( 1,2 (.1

Ci~

'~'~' = J e C.j(-)fs- (00dC ., 3,4.

Therefore

DI'] + "J (4.12)

C 2  
0 C,

Prpo-3o 5./c Let ca

_ _ _ _ -i1 0 _ _ __ C

de -2 = (c,-l k~~ 22 (c___ fctc 4 - ccz 2i
c1 +

110

Pr.f Wei have~

2*w I.*4* .**

(c - k~~ 'S ca-+.k: :

*~~etDI 
ae~IV. 

'V w~~~V" 
*%t 4 r~ .
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Idet(D-I)i iL IzI -c-l, i,
ctk4., 0

it suffices to show that

s i.. &z1  a , for all w~ C R (4.14)

and

Iz~ a ~0, o om 0. for all 'w C P. (4.15)

* But by direct calculations,

- (kc.-c.-k~c~c,) Co.

jZ,122 - 312 4

1 ic.c.k ~ cc +c 4c.k,c, c+c+k 2C

Uc+c +kzc c. 1c1 c 1c 1' Zia

-2(c,+c.-kc.cj)(c,-c.+k.c.).A con.Z]2 (c,+c+kZc.CZ ) 2 cO ]

I 8k,'c.c. I
I (I c Cos L- a 0, for all w c R.

(c+c+ .. C ca) ca

So (4.14) is verified.

Inequality (4.15) is obvious from the definition of zi in (4.13), because

ckcc 1, for any k'A 0.

Therefore the proof is complete. (3

k

Lemma 6. The operator A defined in (4.4), (4.7) Satisfios conditions (4.1)-

- (4.3), provided that k2 ~ .ka h 0.

.r' Proof. (4.1) is trivially satisfied because A is a dissipative operator. (4.2) follows

~ from Proposition 5 because equations (4.12), (4.10) and (4.9) are all solvable for any

given f cx.
- Finally, (4.3) is satisfied because in (4.11)

7 T,

4. -
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are satisfied and because of Proposition 5, (4.12), (4.16), (4.10) and (4.9).

Hence we conclude

Theorem 7. Under the assumptions k: 1 0, k: h 0, the energy of the coupled linear

vibrating strings (1.2), (1.4), (1.6) and (1.7) decays uniformly exponentially.

Therefore, for coupled linear strings, one stabilizer (k2 5, 0. k" 0) is
o a

sufficient to cause exponential decay of energy. The feedback gain k" can be

chosen arbitrarily.

By straightforward calculations, nne can easily see from (4.12) that Proposition

5 in general does not hold if k: = 0, k: , 0 (i.e., only one stabilizer is

installed in the middle of the span), unless c, and c, sifycranspecial

relations, such as cl/cj 2, e.g. More importantly, this exponential stabilly is not

robust with respect to ci/ca in the sense that if cl/c. differs just slightly from

2 (or certain given number), then exponential stability no longer holds.

Therefore we see that a point stabilizer installed at the boundary is robust

N with respect to exponential stability for coupled nonlinear and linear vibrating
strings.
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